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Abstract—This paper studies the problem of learning latent
representations or embeddings for users in social networks, by
leveraging relationship semantics associated with each link. User
embeddings are low-dimensional vector-space representations de-
signed to preserve structural proximity indicated by the pairwise
relationships. In social networks, the closeness (or proximity)
between pairs of users is very different w.r.t. multiple social
relationships and thus cannot be represented accurately using
a single embedding space. Furthermore, social networks pose a
unique challenge of relationship label sparsity that precludes the
application of knowledge-graph embedding techniques.

In this paper, we associate each observed link with multi-
ple relationship types through relationship weights and learn
projection matrices for each relationship type to model the
social distance (or proximity) between users specific to each
relationship. We propose a novel two-step mutual enhancement
framework to iteratively (a) learn user embeddings preserving
relationship-specific proximity, and (b) link-relationship weights
capturing the role of each link in multiple relationship types.
The first step learns user embeddings optimizing relationship-
specific proximity, while fixing the relationship weights (or roles)
for each link. In the second step, the user embeddings and corre-
sponding projection matrices are assumed to be fixed, while the
link-relationship weights are learned. We demonstrate that the
relationship-aware user embeddings learned through this mutual
enhancement framework, are more effective in representing the
users and outperform representative baseline techniques in multi-
label classification and relationship prediction tasks.

Index Terms—Network modeling, Social embedding, Classifi-
cation and Clustering

I. INTRODUCTION

In recent years, social networks have become increasingly
popular with an exponential growth in the number of inter-
acting users. This has led to an imminent need for mining
information from social networks, to support various social
media applications such as online advertising, marketing and
recommendation. Thus, it is essential to accurately learn useful
features or representations for users in a social network, that
capture their attributes and structural relationships.

Learning latent representations for nodes in a large graph
(or network), has recently gained prominence as a fundamental
research problem. Each node in the network is represented as
a low-dimensional vector that is designed to capture various
kinds of semantic, relational and structural information con-
veyed by the network, i.e., the goal is to reconstruct and predict
the properties of the network in the learned embedding space.
Such low-dimensional node embeddings have widespread ap-
plications in various machine learning tasks such as graph
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visualization [1], node classification [2], clustering [3], link
prediction [4] and recommendation [5, 6].

The key challenges faced in learning effective latent rep-
resentations for users, are non-linearity and sparsity. Existing
methods employ a wide range of techniques to capture network
structural properties in varying extents, which determines their
effectiveness in different applications. Recent techniques have
been inspired by the development of neural language models
for learning latent representations of words in a text corpus.
For example, DeepWalk [7] transforms a social network into a
collection of paths (sequence of users) using random walks and
uses the Skip-gram model [8] (originally designed for words)
to learn representation of users capturing co-occurrences in
the sampled random walks. Another technique that follows
a principled approach to learning network representations is
LINE [1], which defines a loss function to capture both 1-step
and 2-step local relational information or proximity. Several
recent methods have examined deep neural networks to model
high-order measures of network proximity [9, 10].

In this work, we focus on social embedding, i.e., learning
latent representations for users in social networks, where the
relationships of the links exhibit different semantics. Most ex-
isting network embedding techniques such as Deepwalk, LINE
and others, are agnostic to how two users are connected in
the network. As a consequence, the latent user representations
learned by these techniques only provide a generic measure
of user proximity in the social network. However, social
networks are typically associated with rich semantics where
users possess various attributes such as gender and hobbies,
and participate in different relationships such as colleagues,
classmates, and neighbors. The social distance between a pair
of users varies significantly based on the type of relationship,
e.g., two users may be very close to each other in terms
of classmates, while being far away from each other in the
relationship of geographical neighbors.

Our objective is to learn embeddings that capture
relationship-specific proximity between users in social net-
works. In order to leverage users’ multiple relationships, we
cannot directly employ existing network embeddings tech-
niques because real-world relation-rich social networks pose
several unique challenges. First, real-world social networks
are faced with severe sparsity on the relationship labels for
each link, e.g., less than 50% of the links have associated
relationship labels in a publicly available Linkedin social
network [11]. Second, each link is typically associated with
multiple relationship labels which are possibly incomplete,
thus rendering the problem to be even more challenging.
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Learn User embeddings based on 
relationship-specific proximity with fixed 
link-relationship weights. 

Learn link-relationship weights based on 
projected link embedding similarity, with 
fixed user embeddings. 

Fig. 1. Illustration of two-step learning of RASE

Finally, different relationships in social networks are not
independent and may exhibit different degrees of correlation,
e.g., two users who are classmates are more likely to live in the
same location than users who are professional acquaintances.

To address the above challenges, we additionally learn as-
sociations or roles for each link in multiple relationship types,
via link-relationship weights. The link-relationship weights
are not normalized, hence allowing independent degrees of
freedom for each link to carry multiple relationships. These
link-relationship weights are then utilized to learn relationship-
aware user embeddings. To learn both user embeddings and
link-relationship weights (or associations) simultaneously, we
propose a novel mutual enhancement framework RASE which
proceeds iteratively in an EM-style step-wise manner.

In the first step, the link-relationship weights are assumed
to be known and fixed, and the user embeddings are trained
by optimizing the social distance (or proximity) between users
specific to each relationship type. We project the original em-
bedding space through relationship projection matrices, which
which enables us to focus on measuring distances specific
to each relationship. Similar concepts have been applied in
the context of knowledge graph analysis [12, 13, 14] where
the objective is to learn latent representations for entities and
relations given a knowledge base such as Wordnet or Freebase.
The general principle used here is that two entities connected
by a specific relation are close when projected onto the relation
space. In our scenario, we follow a similar strategy to learn
user embeddings and relationship-specific projection matrices,
given fixed link-relationship weights.

In the second step, the user embeddings and corresponding
projection matrices are assumed to be fixed, while the link-
relationship weights are learned. Here, the key hypothesis
is that two links have similar associations to a given rela-
tionship r (i.e., possess similar link-relationship weights), if
their corresponding projections onto the relationship space of
r, are similar. We define an objective function to learn the
relationship weights for each link by leveraging relationship-

specific projections of user embeddings. To further reduce the
training complexity, we introduce a clustering algorithm to
cluster links based on their relationship-specific representa-
tions, which leads to a reduction in complexity from quadratic
to linear in the number of links.

We evaluate the learned embedding representations on two
real-world social network datasets, i.e., Facebook [15] and
Linkedin Ego-networks [11] on two different tasks, i.e., Multi-
label classification and Relationship prediction. We find that
our algorithm RASE outperforms baselines techniques by
significant margins on these datasets. The main contributions
of this work are summarized as follows:

1) In this work, we draw attention to the problem of
relationship aware social network embedding where we
propose to capture users’ relationship specific distances
in the corresponding projected subspaces of pairwise user
relationships on social networks.

2) We develop a simple and elegant two-step iterative em-
bedding learning framework (i.e., RASE) for relationship
aware network embedding through considering both first-
and second-order network proximity to learn relationship
specific link weights and latent user representations.

3) Through extensive experiments on two real-world social
network datasets, we demonstrate the effectiveness of
RASE for the important yet challenging tasks, multi-label
user classification and link-level relationship prediction.

II. RELATED WORK

In this work, we address the problem of learning latent
representations for users in a social network scenario, by
leveraging the semantics of different relationships between
users. First, we discuss existing literature on learning net-
work embeddings. The earliest techniques such as Principal
component analysis [16] and Laplacian Eigenmaps [17] were
based on dimensionality reduction. They optimize an objective
function that works on an affinity matrix of the network such
that it maximizes the variance of the latent representation.
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Such techniques typically encounter the huge cost of eigen-
decomposition of the affinity matrix which is computationally
very expensive and may not even be possible for massive
social networks. Probabilistic graphical models have also been
introduced to extract multi-faceted representations of social
graphs, and more recently for social behavior analysis [18, 19].

Recent methods for learning network embeddings are based
on stochastic methods or optimization of simpler well-defined
objective functions. Deepwalk [7], one of the first techniques
in this line of work was inspired by neural language models
and uses random walks of nodes to sample paths from the
network. The sampled paths are used to model proximity
between nodes in the network using the SkipGram formulation
introduced in word2vec [8]. LINE [1] defines two objective
functions, modeling first order proximity between neighboring
nodes and second order proximity which models the presence
of common neighbors for a pair of nodes. node2vec [20] is an
extension of Deepwalk based on the design of a biased random
walk controlled by two parameters that allows exploration of
both neighborhoring nodes and node sequences farther from
the root node. Recently, deep learning techniques have been
explored by SDNE [9] which introduces a semi-supervised
deep model using an auto-encoder to preserve both local and
global measures of network structural proximity. Continuing
on this line of work, many specifically designed embedding
algorithms have been developed to capture more complex node
attributes and link structures [10, 21, 22, 23, 24, 25, 26, 27].
Further, contemporary techniques have examined embeddings
methods for dynamic graphs [28]. However, none of them
consider the embedding of different social relationships carried
by the seemingly uniform network links.

Next, we discuss knowledge graph embeddings that learn
representations for entities and relations. Amongst these meth-
ods TransE [29] learns vector embeddings in a continuous
space for both entities and relationships in a knowledge graph.
It models the relationship between two entities by a translation
between the emebeddings of the entities. Later on, TransH [30]
is proposed to address the limitations of TransE in 1-to-N ,
N -to-1 and N -to-N relations, by employing relation specific
hyperplanes. Adversarial learning has also been explored in
the context of neighbor-homophily models [5, 31]. The most
related work to ours is TransR [32], which separates entity
space and relation spaces, and constrains entity distances
in the projected relation spaces. In this way, it is able to
leverage multiple relationships in different semantic spaces
among entities. However, all of these methods assume that
each link in the network is labeled with a relation, and limit
each link to contain a single relationship label, which is not
the case in our problem setting.

III. PROBLEM DEFINITION

We assume the input as a social network which is an undi-
rected graph with partially labeled relationships on each link
of the network. The objective is to learn a latent representation
of the social network where each user is represented as a low-
dimensional vector. We present the formal definitions below:

TABLE I
NOTATIONS.

Symbol Dimensions Description

L L (set) Set of relationship types
U |V| ×D User embedding matrix
Mr D ×D Projection matrix for relationship r ∈ L
W |E| × L Link-relationship weight matrix

Definition 1. Social Network: A social network is defined as
G = (V, E , R), where V is the set of users, each representing
a data object, E is the set of links between the users, each
representing a relationship between two data objects and R
is the set of given relationship labels for each link. Each edge
e ∈ E is an ordered pair e = (u, v) and has an associated
entry le ∈ R which is the set of relationship labels for the
edge e. The set of all possible relationship labels for any edge
is denoted by the set L with cardinality L = |L|, and ∀e ∈ E ,
le ∈ 2L. We assume that G is undirected and not all edges
have associated relationship labels.

Definition 2. Social Network Embedding: Given a large
network G = (V, E ,R), the problem of Social Network
Embedding aims to represent each user v ∈ V into a low-
dimensional space Rd where d << |V|, i.e., learn a function
fG : V → Rd which preserves relationship-specific proximity
between the users in each relationship type in L.

IV. RELATIONSHIP AWARE SOCIAL EMBEDDING

In this section, we present our RASE framework for
learning user embeddings in a social network G. RASE
is a joint iterative learning framework comprising two ma-
jor components: (a) Learning user representations preserving
relationship-specific proximity, and (b) Learning relationship
specific weights for each link. First, we formally define
proximity between users using first-order and second-order
proximities specific to each relationship in Section IV-A. Then,
we will discuss how weights can be learnt for associating
each link to different relationship using the embeddings in
Section IV-B. Finally, we present our joint learning framework
that learns embeddings of user and associations for each link
to multiple relationships iteratively in Section IV-C.

A. Learning User Representations

In order to learn latent user representations, we are inter-
ested in modeling proximity of a pair of users specific to a
relationship. To achieve this goal, we extend the notions of
first and second order proximity defined by LINE [1] specific
to each relationship. Traditionally, the first-order proximity
in a network is the local pairwise proximity between two
linked users which is defined as being proportional to the
weight of the link connecting two users. Since we have partial
relationship information on the links of the network, we allow
each link to have weights specific to each relationship (that
would be later learnt by our model).

RASE: Relationship Aware Social Embedding
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Specifically, we assume that each link e ∈ E has a link-
relationship weight vector we of dimensionality L, repre-
sented by matrix W ∈ R|E|×L. Here, each entry wr

e denotes
the weight of the link e for the relationship r ∈ L. The weight
vectors we would be learnt iteratively by our model. The link-
relationship weights for link e are initialized based on the
given input labels for each edge le ∈ R, i.e., we would be
initialized as binary vector to start. Assuming we have the
weight vectors for each link, we model the proximity specific
to each relationship using the projections of the embedding
vectors of the nodes onto the corresponding relationship space.
For this purpose, we define projection matrices Mr ∈ RD×D

for each relationship r ∈ L. The set of all user representations
are denoted by embedding matrix U ∈ R|V|×D. Table I depicts
the set of all notations used in RASE. Now, we define first and
second order proximity specific to each relationship.

1) RASE - first-order proximity: We capture the proximity
of two users specific to each relationship by defining first order
proximity on the relation space obtained by projecting the
embedding vectors of the two users in a link. For each link
(vi, vj), we define the joint probability between users vi and
vj specific to relation r ∈ L as follows:

p1
r(vi, vj) =

1

1 + exp(−(Mrui)
T
(Mruj))

(1)

where ui ∈ Rd is the embedding representation of user
vi and Mr is the projection matrix for relationship r. Cor-
responding to this probability, we can define the empirical
probability distribution by:

p̂1
r(e = (vi, vj)) =

W r
e

W r
W r =

∑
e=(vi,vj)∈E

W r
e (2)

where W r
e is the link-relationship weight for link e and

relationship r. To preserve first-order we minimize the KL-
divergence between these two probability distributions and
sum over all possible relationship types which gives us:

O1 = −
∑
r∈L

∑
(vi,vj)∈E

p̂1
r(vi, vj) log(p

r
1(vi, vj)) (3)

Assuming we know the weight vectors for each link, we
can optimize this objective function using gradient descent to
obtain the embedding vector ui for each user vi. Similar to
LINE [1], we also consider second order proximity specific to
each relationship, as defined below.

2) RASE - second-order proximity: In general, second-
order proximity assumes that a pair of users that share many
connections to other users are similar to each other. We extend
this definition to relationships by specifying that a pair of users
that are related to many other users in a similar way are similar
to each other specific to that relationship. To model this, we
define context and target vectors for each user to model the
different roles played by each user. Specifically, we assume
each user vi has two vector representations ui and ui

′
where

ui and u
′

i are the representations of vi when it is treated as

a target and context respectively. For each link (vi, vj), we
first define the probability of context vj generated by vertex
vi through relationship r as:

pr2(vj | vi) =
exp((Mru

′

j)
T
(Mrui))∑

vk∈V
exp((Mru

′
k)

T
(Mrui))

(4)

To preserve the second-order proximity, we make the con-
ditional distribution of the contexts pr2(· | vi) specified by the
low-dimensional representations to be close to the empirical
distribution specified by:

p̂2
r(vj | vi) =

W r
(vi,vj)

dri
dri =

∑
vk∈N(vi)

W r
(vi,vk)

Minimizing the KL-divergence between these two probabil-
ity distributions leads to the objective function:

O2 = −
∑
r∈L

∑
(vi,vj)∈E

p̂2
r(vj | vi) log(p2r(vj | vi)) (5)

We optimize this by negative sampling since direct opti-
mization of this function is very expensive [8]. For each link,
we sample K negative samples specific to each relationship.
For link (vi, vj) and relationship r, we get the following
objective function :

O
′

2(vi, vj , r) = log σ((Mru
′

j)
T (Mrui))+ (6)

K∑
i=1

Evn∼Pn(v) log σ(−(Mru
′

n)
T (Mrui)))

This is optimized using stochastic gradient descent to learn
the embedding representations of the nodes. Next, we describe
how to learn associations for each link to multiple relationships
using the learned embeddings.

B. Learning Relationship-specific Weights
In the previous section, we have assumed that the link-

relationship weights W which indicate the role of each link
in different relationships, to be fixed. Here, we describe how
to learn these link-relationship weights by assuming that the
user embeddings and projection matrices obtained from the
first step, are fixed. Our key hypothesis is that the role of two
links in a relationship are similar if the two interacting users
are embedded close in the corresponding relationship space.
The role of a link in a relationship can be used to learn the
association or weights for each edge for multiple relationships.
To achieve this goal, we can define a representation for a link
e specific to relationship r by applying a translation operation
on the relationship-projected user representations given by:

vr
e = Mrui −Mruj

This enables us to define a representation for a link specific
to each relationship. Now, two links which have similar
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Algorithm 1 RASE
1: Initialize We based on le ∀e ∈ E .
2: while user embeddings ui’s have not converged do
. Learn user embeddings U and projection matrices
{Mr∀r ∈ L} by fixing link-relationship weights W

3: Update {ui ∀ vi ∈ V} and {Mr ∀r ∈ L} by
optimizing O1 +O2 simultaneously (Eq. 3 and Eq. 6).
. Learn link-relationship weights W by fixing user em-
beddings U and projection matrices {Mr ∀r ∈ L}

4: Update {W r
e ∀e ∈ E and r ∈ L} by optimizing J2

(Eq. 8).
5: end while

representations in the relationship space of r are expected to
have similar weights w.r.t. relationship r. We can capture this
property by minimizing an objective function as shown below:

J1 =
∑
e1∈E

∑
e2∈E

∑
r∈L

(W r
e1 −W

r
e2)(v

r
e1)

T
(vr

e2) (7)

The above objective function ensures that two links with
similar relationship-specific difference vectors have similar
link-relationship weights. Note that the above objective func-
tion involves iterating through all pairs of links in the network
for each relationship leading to a complexity O(L|E|2) which
is very expensive even if sampling is used. Furthermore, we
may not need to compare every pair of links since we expect
multiple links to exhibit similar behavior.

To reduce the computational complexity, we first cluster
the links based on a combined representation across all the
relations, i.e., the embeddings specific to all the relationships
are concatenated to obtain a combined representation for a
link. Then, we use K-medoids to cluster the links into K
clusters and identify the cluster center. We assume that the
weight assigned to each cluster center (from the previous
iteration) is non-zero for the different relations. (If not, we
compute the next closest cluster center). Then, these cluster
centers are used to approximate the objective function defined
above by defining each link to be similar to its cluster center
with a weight close to that of the cluster center. This leads to
a simpler efficient objective function given by:

J2 =

K∑
k=1

∑
e∈Ek

∑
r∈L

(W r
e −W r

k )(v
r
e)

T
(vr

k) + λ ‖W ‖2 (8)

where Ek is the set of all links assigned to cluster k, and vr
k

is the embedding of the corresponding cluster center. We can
compute the gradient w.r.t. each weight W r

e as:

∂J2
∂W r

e

= (W r
e − wr

k)(v
r
e)

T
(vr

k) + 2λW r
e

C. Iterative Learning Framework
In the previous sections, we have described the sepa-

rate steps of learning user embeddings and link-relationship
weights. Here, we describe how to combine the two steps
outlined earlier to develop a mutual enhancement framework

TABLE II
STATISTICS OF THE DATASETS.

Dataset # nodes # links # rel labels

Facebook 4,039 88,234 8
Linkedin 29,040 118,302 3

to learn both user embeddings as well as link-relationship
weights. The overall objective function is given by:

J = O1 +O2 + J2

Alg. 1 depicts the pseudo code of the iterative learning frame-
work. The algorithm proceeds in a block-coordinate descent
manner in two alternating optimization steps. In the first step,
the user embeddings and projection matrices are learnt by
capturing relationship-specific proximity based on the weights
of the links for each relationship, while keeping the link-
relationship weights fixed. In the second step, the user embed-
dings and projection matrices are fixed while the relationship-
specific weights for each link are learnt by capturing the role
of each link in multiple relationships based on the translated
projected embeddings of the corresponding users. The weight
vectors of each link are initialized based on the available
relationship labels in the dataset, i.e., {le 6= φ; ∀e ∈ E}
by using a binary vector to initialize the weight vectors. As
illustrated in Alg. 1, the two steps are repeated alternately until
the learned user embeddings converge. In the next section, we
describe our experiments and evaluation.

V. EXPERIMENTS

In this section, we present our experiments on two real-
world publicly available social network datasets. We first de-
scribe the datasets in Section. V-A, then introduce the baselines
in Section. V-B and finally present our results on multi-label
classification and relationship prediction in Section. V-C.

A. Datasets

We conduce experiments on two popular real world social
networks from Facebook and LinkedIn. An overview of the
dataset statistics is provided in Table II :
• Facebook [15] : This dataset has 10 ego-networks of

friends with multiple attributes for each user, which
were used to construct meaningful relationship labels. We
constructed 8 relationship labels based on the attributes
that were not sparse. These include major, college, school,
hometown, location, employer, work-location and work-
position. In this dataset, only 44,900 links had at least one
relationship label out of 88,234 links, which corresponds
to a fraction of about 50%.

• Linkedin [11] : This dataset contains a set of ego-
networks on Linkedin with about 250 ego networks. It
has three relationship labels between pairs of users which
are employer, location and college. In this dataset, only

RASE: Relationship Aware Social Embedding
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TABLE III
RELATIONSHIP PREDICTION RESULTS ON THE FACEBOOK DATASET.

Relationship type Algorithm Average Hadamard Weighted-L1 Weighted-L2

location

Deep walk 0.609 0.613 0.531 0.527
Node2vec 0.649 0.658 0.557 0.568

LINE 0.588 0.586 0.529 0.539
TransE 0.636 0.594 0.564 0.565
RASE 0.657 0.667 0.582 0.581

hometown

Deep walk 0.658 0.654 0.567 0.580
Node2vec 0.681 0.687 0.590 0.594

LINE 0.636 0.638 0.547 0.558
TransE 0.691 0.631 0.593 0.588
RASE 0.697 0.721 0.624 0.627

school

Deep walk 0.622 0.620 0.541 0.550
Node2vec 0.654 0.654 0.561 0.558

LINE 0.636 0.633 0.542 0.541
TransE 0.624 0.621 0.574 0.576
RASE 0.657 0.662 0.578 0.577
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Fig. 2. Classification results on Facebook and LinkedIn datasets

58,276 links had at least one relationship label out of
118,302 links, which give a fraction of about 49%.

We use the attributes of the users in both datasets to evaluate
the performance of the embeddings on classification.

B. Baselines

To validate the performance of our approach we compare
it against a number of state-of-the-art baselines from both
general network and knowledge graph embedding methods as
listed below:

• Deepwalk [7] : This approach learns d-dimensional fea-
ture representations by learning user co-occurrences from
uniformly sampled random walks.

• LINE [1] This approach learns d-dimensional feature
representations in two separate phases. In the first phase,
it learns d/2 dimensions using first-order proximity while
in the second phase, it learns the next d/2 dimensions
using second-order proximity.

• Node2vec [20] : This approach extends Deepwalk by
using a biased random walk strategy. It simulates both
BFS and DFS exploration of the network in order to
perform path sampling.

• TransE [29]: This is a knowledge-graph embedding
method designed to operate on entities and relations.
To use this method, we provide a fully labeled social
graph as input, using an extra relationship type indicating
unknown/absent relationships.

C. Experimental Results

We evaluate the performance of different network embed-
ding methods on two standard downstream prediction tasks.
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TABLE IV
RELATIONSHIP PREDICTION RESULTS ON THE LINKEDIN DATASET.

Relationship type Algorithm Average Hadamard Weighted-L1 Weighted-L2

college

Deep walk 0.744 0.680 0.544 0.546
Node2vec 0.707 0.715 0.577 0.567

LINE 0.664 0.648 0.518 0.505
TransE 0.704 0.601 0.569 0.542
RASE 0.766 0.736 0.581 0.576

location

Deep walk 0.614 0.610 0.521 0.518
Node2vec 0.576 0.617 0.531 0.531

LINE 0.571 0.564 0.508 0.512
TransE 0.598 0.559 0.554 0.538
RASE 0.646 0.625 0.544 0.551

employer

Deep walk 0.623 0.621 0.523 0.528
Node2vec 0.602 0.663 0.535 0.545

LINE 0.599 0.644 0.521 0.502
TransE 0.619 0.588 0.556 0.531
RASE 0.665 0.662 0.564 0.547

1) Multi-label classification: In the multi-label classifica-
tion setting, every user is assigned one or more labels from a
finite set L which is the set of user attributes in our case.
During the training phase, a certain fraction of labels are
observed and the task is to predict the labels for the remaining
nodes. We split the input data into train and test with 80%
to 20% ratio and evaluate the performance based on 5-fold
cross-validation. We report the classification accuracy obtained
using cross-validation. For all models we use a one-vs-rest
logistic regression implemented by LibLinear [33] extended
to return the most probable labels. We use the embedding
dimension d = 128 for all methods and use parameters such
as window size - 10, walk length - 20 and walks per vertex -
20 for both Deepwalk and node2vec. For LINE, we evaluate
the model using both first-order and second-order proximity
independently and report the best results. The classification
results obtained on the two datasets are shown in Figures 2.

Our proposed algorithm RASE constantly outperforms the
compared baselines by significant margins, indicating the
sanity of considering relationship-aware embeddings and the
effectiveness of our particular model design. We find that
TransE performs significantly worse than general network
embedding methods for = classification, which is primarily due
to its inability to model second order proximity w.r.t. different
relationships. On the other hand, during the experiments,
we do observe slight overfitting of relationship projection
matrices. Part of the reason for this could be due to the fact that
the projection matrix has a dimensionality of D×D where D
is the dimensionality of the embedding space, which leads to a
large number of parameters learned. It may be prudent to place
restrictions and narrow the domain of the learning algorithm
to obtain better results, which we leave as a promising line
of future work. A possible exploration could be to enforce
sparsity norm constraints on the projection matrices.

TABLE V
BINARY OPERATORS USED FOR LEARNING LINK FEATURES IN

RELATIONSHIP PREDICTION TASK.

Operator Symbol Definition

Average � [f(u) � f(v)]i =
fi(u)+fi(v)

2
Hadamard � [f(u) � f(v)]i = fi(u)× fi(v)

Weighted-L1 ‖ · ‖1 ‖ f(u) · f(v) ‖1i= |fi(u)− fi(v)|
Weighted-L2 ‖ · ‖2 ‖ f(u) · f(v) ‖1i= |fi(u)− fi(v)|2

2) Relationship prediction: In the relationship prediction
problem, we sample a fraction of all labeled links (subset S
⊂ E) and learn embeddings on this reduced set of links. We
perform relationship prediction on unlabeled links using the
user embeddings learned. Given an unlabeled link (vi, vj) we
predict the existence of each relationship label, l ∈ L, the
set of all relation labels in the network on the link. We use
logistic regression implemented by LibLinear [33] to perform
binary classification for every relationship label. Input features
are chosen as Average, Hadamard distance, L1 distance and
L2 distance, of the user embeddings corresponding to the end
points of each link, similar to [20]. The relationship prediction
results are tabulated in Tables 2 & 4.

In these experiments, RASE outperforms the baselines,
although by smaller margins, specifically in the Hadamard,
Weighted-L1 and L2 feature spaces. A probable reason could
be the reorientation of the user embedding space to better
align user embeddings to capture proximities upon projection.
This could lead to the user translation vectors having more
pronounced relationship specific dimensions which benefits
this task. In this setting, we find TransE to be a very competi-
tive baseline, however it still suffers from relationship sparsity
unlike RASE which learns soft link-relationship weights.

RASE: Relationship Aware Social Embedding
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VI. CONCLUSION

In this work, we focus learning relationship aware network
embedding for social networks, where the semantics of each
link and relationship specific proximities are preserved in
the corresponding projected subspaces of latent relationships.
A two-step inference algorithm considering both first- and
second-order proximities to learn relationship specific link
weights is designed and shown to be effective in multiple
real-world social network datasets. Future work includes im-
provements on the effectiveness and efficiency of the proposed
algorithm, interpretation and discrimination of the learned em-
bedding regarding target relationships of the network, as well
as its applications towards various downstream applications.

REFERENCES

[1] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan,
and Qiaozhu Mei. Line: Large-scale information network
embedding. In WWW, pages 1067–1077. ACM, 2015.

[2] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node
classification in social networks. In Social network data
analytics, pages 115–148. Springer, 2011.

[3] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral
clustering: Analysis and an algorithm. In NIPS, volume 14,
pages 849–856, 2001.

[4] David Liben-Nowell and Jon Kleinberg. The link-prediction
problem for social networks. Journal of the Association for
Information Science and Technology, 58(7):1019–1031, 2007.

[5] Adit Krishnan, Ashish Sharma, Aravind Sankar, and Hari
Sundaram. An adversarial approach to improve long-tail per-
formance in neural collaborative filtering. In Proceedings of
the 27th ACM International Conference on Information and
Knowledge Management, pages 1491–1494. ACM, 2018.

[6] Iftikhar Ahamath Burhanuddin, Payal Bajaj, Sumit Shekhar,
Dipayan Mukherjee, Ashish Raj, and Aravind Sankar. Similarity
learning for product recommendation and scoring using multi-
channel data. In 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), pages 1143–1152. IEEE, 2015.

[7] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk:
Online learning of social representations. In SIGKDD, pages
701–710. ACM, 2014.

[8] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In NIPS, pages 3111–3119, 2013.

[9] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep
network embedding. In SIGKDD, pages 1225–1234. ACM,
2016.

[10] Thomas N Kipf and Max Welling. Semi-supervised classifica-
tion with graph convolutional networks. In ICLR, 2017.

[11] Rui Li, Chi Wang, and Kevin Chen-Chuan Chang. User profil-
ing in an ego network: Co-profiling attributes and relationships.
In WWW, 2014.

[12] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua
Bengio. Learning structured embeddings of knowledge bases.
In Conference on artificial intelligence, 2011.

[13] Adit Krishnan, P Deepak, Sayan Ranu, and Sameep Mehta.
Leveraging semantic resources in diversified query expansion.
World Wide Web, 21(4):1041–1067, 2018.

[14] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio.
Holographic embeddings of knowledge graphs. In Thirtieth
Aaai conference on artificial intelligence, 2016.

[15] Jure Leskovec and Julian J Mcauley. Learning to discover social
circles in ego networks. In Advances in neural information
processing systems, pages 539–547, 2012.

[16] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang,
Qiang Yang, and Stephen Lin. Graph embedding and ex-
tensions: A general framework for dimensionality reduction.
TPAMI, 29(1), 2007.

[17] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and
spectral techniques for embedding and clustering. In NIPS,
volume 14, pages 585–591, 2001.

[18] Qiang Qu, Cen Chen, Christian S Jensen, and Anders Skovs-
gaard. Space-time aware behavioral topic modeling for mi-
croblog posts. IEEE Data Eng. Bull., 38(2):58–67, 2015.

[19] Adit Krishnan, Ashish Sharma, and Hari Sundaram. Insights
from the long-tail: Learning latent representations of online user
behavior in the presence of skew and sparsity. In Proceedings
of the 27th ACM International Conference on Information and
Knowledge Management, pages 297–306. ACM, 2018.

[20] Aditya Grover and Jure Leskovec. node2vec: Scalable feature
learning for networks. In SIGKDD, pages 855–864. ACM, 2016.

[21] Tianshu Lyu, Yuan Zhang, and Yan Zhang. Enhancing the
network embedding quality with structural similarity. In CIKM,
pages 147–156. ACM, 2017.

[22] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R
Figueiredo. struc2vec: Learning node representations from
structural identity. In SIGKDD, pages 385–394. ACM, 2017.

[23] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan
Chang. Motif-based convolutional neural network on graphs.
arXiv preprint arXiv:1711.05697, 2017.

[24] Carl Yang, Mengxiong Liu, Vincent W Zheng, and Jiawei Han.
Node, motif and subgraph: leveraging network functional blocks
through structural convolution. In ASONAM. IEEE/ACM, 2018.

[25] Carl Yang, Hanqing Lu, and Kevin Chang Chang. Cone:
Community oriented network embedding. In arXiv preprint
arXiv:1709.01554, 2017.

[26] Carl Yang, Yichen Feng, , Pan Li, Yu Shi, and Jiawei Han.
Meta-graph based hin spectral embedding: Methods, analyses,
and insights. In ICDM, 2018.

[27] Carl Yang, Mengxiong Liu, Frank He, Xikun Zhang, Jian Peng,
and Jiawei Han. Similarity modeling on heterogeneous networks
via automatic path discovery. In ECML-PKDD. Springer, 2018.

[28] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao
Yang. Dynamic graph representation learning via self-attention
networks. arXiv preprint arXiv:1812.09430, 2018.

[29] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason
Weston, and Oksana Yakhnenko. Translating embeddings for
modeling multi-relational data. In NIPS, pages 2787–2795,
2013.

[30] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen.
Knowledge graph embedding by translating on hyperplanes. In
AAAI, pages 1112–1119. Citeseer, 2014.

[31] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin
King. Recommender systems with social regularization. In
Proceedings of the fourth ACM international conference on Web
search and data mining, pages 287–296. ACM, 2011.

[32] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan
Zhu. Learning entity and relation embeddings for knowledge
graph completion. In AAAI, pages 2181–2187, 2015.

[33] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,
and Chih-Jen Lin. Liblinear: A library for large linear classifi-
cation. JMLR, 9(Aug):1871–1874, 2008.

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19714.pdf- 8 -


